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1 Introduction

The results presented in this report directly contribute to the objectives of the DARKO
project, specifically: (02) Efficiency in human-robot coproduction, and (O4) Risk-aware
operation for safety and efficiency. This deliverable describes the work carried out within
task T6.2, specifically on the design of risk-aware strategies to cope with uncertainty and
risk factors during all stages of robot navigation. By incorporating heightened awareness of
uncertainty, robotic systems can effectively prevent undesirable situations, thus enhancing
both safety and performance.

This task is closely related to other components of the navigation stack: task T6.1,
concerning context and predictive local planning, task T6.3 addressing efficient and
context-aware global planning, and finally the safety layer proposed in T6.4. We will
explain how the work carried out in T6.2 is integrated in the navigation motion planning
pipeline in section 2. Furthermore, this work builds on the risk factors identified in task
T7.1.

In the risk management literature, risk is defined as an uncertain event that, if it occurs,
has a negative impact on the success of a task. It is typically expressed as a combination of
probability and severity. In the state-of-the-art in motion planning, risk is often considered
solely as the probability of a collision. In contrast, our approach extends the risk concept
in motion planning, including together with the collision risk other factors that could
compromise task success. These additional risks include potential delays caused by human
presence along the selected route, loss of localization, or navigation through an area
with objects difficult to detect. To address these challenges, we explicitly incorporate
uncertainty and implement strategies at both the global route selection and local planning
levels.

At the global planning level, a key source of uncertainty for a robot operating in a
human-robot shared environment is the unpredictable presence of humans within the
workspace. For example, if a robot encounters a person while traversing a constrained
area, it may need to stop or slow down to ensure safe interaction, thereby increasing
the risk of delays. Consequently, encountering a person during navigation is treated as a
risk factor. This risk factor will have as probability the probability of encounters and as
severity a measure of the impact of having an encounter at that location. We describe the
risk-aware route decision maker developed in Section 3.

At the local planner level, we introduce multiple risk maps, each representing a different
space-dependent (static or dynamic) risk factor probability. These maps allow the planner
to assess and respond to localized risks more effectively. In addition, we design an active
sensing layer to minimize uncertainties related to localization and object detection, thus
reducing the risk of task failure. The methodology for addressing risk factors within the
local planner is discussed in Section 4. Our research also focused on formally evaluating
the probability of collision along continuous paths (Section 5).

Finally, Section 6 summarizes the key findings and insights from this work and discusses
ongoing and future works.

2 Overview

In this section, we describe how this work integrates with the other components of the
navigation motion planning pipeline.

The DARKO navigation architecture was designed according to the following require-
ments:

* Make use of the many contextual cues that the robot can perceive. These cues
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Figure 1: Architecture overview of our navigation system. The components described in this
deliverable are the route decision maker and the risk constraints at the local planner level.

include detected positions, poses and activities of the moving people, static and dy-
namic scene maps, congestion risks estimations and human-robot spatial interaction
components.

* Decompose the complex planning problem into a hierarchical system of layers, each
effectively handling a different planning horizon from risk-aware task scheduling to
safe velocity control in close proximity to people.

* Make the navigation safe and efficient by considering predictions and risk assessments
on every layer. The generated plans should reduce the risk of collision or in general
robot’s unsafe operations to a minimum.

According to these requirements, we have developed a multi-layered navigation stack,
see Figure 1. The architecture follows a predictive planning setup: differently from a tradi-
tional sense-plan-act one [25], our architecture plugs on different types of predictions of
surrounding humans and dynamic objects inside the different layers, considering different
time scales. Similarly, we allow the usage of several contextual cues across the several
layers, e.g., risks, human activities. Our architecture is composed of four main layers: (1)
Reasoning and Scheduling (WP7, T6.2), (2) Global planning (T6.3), (3) Local planning
(T6.1, T6.2), (4) Safety layer for safe vehicle motion (T6.4).

The work in this task covers 1) the risk-aware route decision maker in the Reasoning
and Scheduling block and 2) the risk constraints integrated in the context-aware MPC
(Model Predictive Control) developed in T6.1.

The reasoning and scheduling layer are responsible for scheduling the next task and
selecting a rough path through the large environment with many ways to reach the desired
location. The risk-aware policy (WP7) aims to define the next operational actions, such as
selecting which object to retrieve or engage with and determining strategic waypoints for
efficient task execution. Instead, the risk-aware route decision-maker or route planner,
see Section 3, is used to perform long navigation tasks. The goal of this module is to
provide a policy that selects routes minimizing the risk of performance degradation, such
as delays caused by necessary slowdowns during human-robot interactions, to ensure
safety. The problem is formulated as a Markov Decision Process (MDP), where states
include potential observations the robot can make at intersection points. This formulation
allows for the modeling of dynamic re-planning, obstacle visibility, alternative route costs,
and the severity of potential encounters, offering a more adaptive and robust navigation
strategy.

We use heterogeneous maps to incorporate the concept of risk in the local planner. The
risk maps include a dynamic collision risk map that accounts for dynamic uncertainties
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in obstacle detection and localization, and static risk maps, e.g., alignability maps [5],
which encode the risk of loss of localization accuracy for all traversable regions. The MPC
integrates these risk maps as weighted soft constraints, adjusted based on the severity of
the corresponding risk factor.

In addition to the risk maps, we plan to incorporate an active sensing layer into the
MPC framework, as described in [15, Ch. 6]. This layer will enhance safety by reducing
collision and localization uncertainties by optimizing sensory information flow metrics
[16]. This enhancement will equip the robot with dynamic re-planning capabilities to
mitigate task failures and facilitate recovery from localization loss. This framework will be
presented at the 2025 European Robotics Forum [26].

3 Risk-aware route planning

Indoor environments typically have well-defined layouts and maps that allow efficient
path planning, routing, and navigation. However, a route or path that traverses dynamic,
shared, and constrained spaces (e.g., corridors in a warehouse) can quickly degrade the
robot’s performance (e.g., delaying the reaching of the final destination) when these
spaces are occupied by people or temporary obstructions. To move safely along humans,
autonomous robots need to adjust their trajectory near people locally, to reduce their
velocity, or to change route, resulting in some performance degradation. Furthermore,
collaborative robots should also ensure that the interaction is perceived safe by the human
during the encounter [22]. Consequently, when an autonomous robot enters a setting
where humans may be present, it is prudent to recognize the potential risks associated
with potential encounters throughout the various phases of motion planning. The number
and location of humans in the environment are typically uncertain, and the location of the
encounter is associated with different levels of severity. Autonomous robots are typically
equipped with onboard sensors and detection modules that can gather real-time data on
congestion levels as the robot approaches critical decision points where multiple paths or
routes to the final destination are available. This allows for online adjusting the path/route
if less risky alternatives are available. We investigated how to exploit, in a routing problem,
with some prior information, the robot’s ability to perform local observations to anticipate
situations potentially at high risk of degrading the robot’s overall performance (apart from
safety).

Consider the problem of planning the best strategy for a robot to move from a starting
position S to a goal G. Let us assume, for simplicity, that the probability distributions of
the costs of each edge are independent. Notably, the solution can be found with one of
many algorithms from the literature [9] and is given by a static path path 2* from S to G,
characterized by the minimum possible expected cost

»* =argrr£nC(9”). (D

Consider, for example, the simple case in Figure 2, where the graph represents the
homotopy classes of a room with three obstacles, a starting point, a goal, and two doors,
which translate into five decision points and eight edges.

Starting from node S, four alternative paths exist to reach node G: the blue, the red,
the green, and the yellow one. By computing the expected cost (E[C]) of the four paths
we get

E[Cprye] =¢(S,1) + E[C(1 )] = 12.7,

E[Creq] = ¢(S,2) + E[C5 5] = 15.75,
E[Cgreen] = ¢(S,2) + E[Cp3)] + E[C3.6)] = 19.1,



H2020-ICT-2020-2: 101017274 DARKO Deliverable D6.2

Edge | Cost Edge | Cost

(5,1 15 (s,2) 2
c=4,p=08 ¢, =5,p;=0.75

1,6 { ¢, =40, p, =0.2 (2,6) ¢, =40, p, =0.25
¢ =6,p;=0.7 { ¢, =3,p;=0.85

(1,4 { ¢y = 40, py = 0.3 (2,3) ¢y =40, py = 0.15
¢ =6,p,=0.7 3G {c1=3,p1=0.85

(4,G) { ¢, =40,p,=0.3 6.6 ¢y =40, p, =0.15

Figure 2: Stochastic graph where the edge cost becomes known in the node at the tail of the
arc. From node S to node G there are four different paths: the blue, the red, the green, and
the yellow.

E[Cyellow] = C(S; 1) + IE[C(l,4)] + Il:-‘:[C(4,G):| =33.9.

Therefore, the minimum cost is 12.7, which is obtained, on average, by the blue path.

Let us assume now that, when the robot approaches a decision point, its sensors provide
some information y about the congestion of adjacent routes. Consequently, it is reasonable
that the probabilities p; associated with the cost C; assuming values ¢; may change to
some new values

P(C; =cjly) =D;- 2

As new information is acquired while moving, the optimal path #* will not be static, but
will adapt online according to the performed observation. In this scenario, it is more
appropriate to talk about policies. In general, a policy II is a function

n=I1(v):v-E, 3)

that given the current configuration of the robot, represented by a node v, yields the next
action, here represented by the edge e.

The solution of (1) can be extended to a static policy II, that assigns the action
corresponding to the minimum prior expected cost at each node. However, this policy
is, of course, not optimal as it does not take into account the new information acquired
online.

In this case, a common approach [6] is to start to follow the optimal path, and then
re-calculate a new static path 3?’; , which is optimal based on the new information y.
This generates a naive dynamic policy II;. However, such a policy is not always optimal.
Consider again our toy example in Figure 2, where each edge cost becomes known when
the robot reaches its outgoing node. The optimal path is the blue one, so the robot would
take edge (S, 1). It could happen that after the robot has executed the first step of the
originally optimal path &*, it observes that an obstacle is present on the edge (1, G),
thus updating the graph costs, and, if edge (1, 4) is free (so its value is 6), it produces a
novel policy H;‘, for which the next optimal step is (1,4). Such a strategy would lead to an
expected cost

E[Cln, =¢(S,1)+p1(1,G)e1(1, G) + po(1, G)[pa(1,4)-
- ¢2(1,G) + p1(1,4)(c1(1,4) + E[C4,6)D] = 10.21.
However, the overall optimal dynamic policy (IT*) for the toy example is as follows: the
robot takes edge (S, 2). Here, if the edge (2, G) has cost 5 or if both edges (2, G) and (2, 3)
have cost 40, the robot takes edge (2, G). In the other case, it takes edge (2, 3). Indeed,
computing the expected cost of this policy results in
E[Clp- =¢(S,2)+p1(2,G)e1(2,G) + p,(2, G)[pa(2, 3):
- €3(2,6) + p1(2,3)(c1(2,3) + E[Cs 6 D] = 9.70.
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Figure 3: Suppose a scenario where the only way to reach the goal from node 1 is to take the
edge on its left. The robot movements are represented by red arrows, the blue dot is a static
person performing a task on the edge: (a) If the robot arrives in 1 and observes an obstacle on
the left edge, and none on the right one, if the severity of passing in (1, G) is higher than the
expected cost of going to node 3 and return to node 1, the robot would follow such strategy.
(b) If the obstacle is static, however, this is not true, and, returned to node 1, the robot will
make the same observation entering a loop.

This problem belongs to a class known as "stochastic shortest path with recourse"
(SSPR) [20]. In general, finding a policy that is optimal under the above-mentioned
assumptions is not a trivial task. Indeed, whenever the graph ¥ contains cycles, which
happens very often in practical cases (see e.g., Figure 4), solving SSPR can be NP-Hard [20].

In [21], authors demonstrate that solving SSPR for networks with cycles can be done
with polynomial complexity only if the stochastic graph has the property that each time
the agent returns to the same node, the cost of its outgoing star arcs is independent of
previous realizations (otherwise the problem is, at best, NP-complete). This is known as
the reset property. However, assuming reset for networks with cycles can lead to policies
that get stuck in loops when the real use-case problem does not have this property.

An example of this problem is shown in Figure 3. There, the only way to reach G from
node 1 is to take the edge (1, G), whereas, by assuming the reset property, it seems less
costly to loop through (1, 3),(3,2),(2,0),(0,1) and back to node 1 “in hope" of a better
observation. This clearly leads to policies that are not useful in practice, e.g., in the case
of static obstacles whose position is stochastically defined.

Therefore, our goal is to make such solutions usable also in those cases, by proposing
a suitable mitigating strategy. Moreover, in the classical SSPR problem formulation, as
in our toy example, the edge cost would become known when the agent reaches its tail
P(C; = cj|y) = 1. Instead, in a shared dynamic environment, this is not true, as people
may enter while the robot is already moving in the corridor, or might not be visible from
the decision point. We therefore need to explicitly compute P(C; = ¢;|y) = p;.

3.0.1 Cost Metric

We consider as a cost metric the sum of the path length resulting from the selected policy,
lpacn> and the sum of edge-dependant penalties c,[edge] (the severity associated with the
risk in that location).

k
C(P) = Ly + Y (cpnledges]) )
h=0

where k is the total number of people encountered while reaching the goal.
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Figure 4: Consider a scenario where 3 people {A, B, C} are present in the robot environment.
Our assumptions will imply that if the robot is in node S: person A is observable, person B is
not observable, and person C’s presence is not considered in node S as he/she isn’t in an edge
of the outgoing star of node S. Person C will instead be observable from nodes {0, 3}.

3.1 Problem Formulation as an MDP

We consider an unknown number n € NN [0, N, ] of people in the environment. A complete
representation of the problem would require including the possible number of people in
each corridor in the state space and solving the problem as a Partially Observable Markov
Decision Process (POMDP), where the robot position is known and the human positions
are partially observable. However, this method would become quickly intractable. Even
without discussing the computational complexities in solving a POMDP [19], consider an
environment with 50 corridors. Assuming 20 people, the number of states (just considering
the possible human distributions in the corridors) would be: n;, = (ig) giving a number of
states of the order of 107,

Therefore, our idea is not to consider the number of people in each corridor as part
of the state, but we propose to include in it what would have been the observations of
the POMDB namely the possible observation the robot can make from each intersection
point in the map. In this way, we obtain an MDP with a number of states that scales only
linearly by increasing the number of intersection points and that does not depend on the
number or possible distribution of people in the environment. A Markov Decision Process
(MDP) is a mathematical framework used to model decision-making problems in situations
where an agent interacts with an environment over a sequence of discrete time steps. The
components to fully describe an MDP are:

» States (&): A set of possible situations or configurations of the system.
* Actions (.&/): A set of possible decisions that the agent can make.

» Transition probabilities matrix (P): It is a three-dimensional matrix that describes
the probability of transition from one state to another given a particular action. The
element P[a,s,s’] represents the probability of transitioning from state s to state s’
when action a is taken. P will have dimensions (axsxs).

* Rewards matrix (R): A matrix that specifies the immediate rewards the agent
receives for transitioning from one state to another by taking a specific action. The
entry R[a,s] represents the reward associated with the selected action a from state
s.

For simplicity, we consider that when the robot is in a node v € V it makes observations
only in the adjacent corridors (e € E | e = (v, u) for some u € V) (Figure 4). Suppose a
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Figure 5: Examples of different states the system can be when the robot is in node i.

person is in [, (v, e), the visible part of the corridor that the robot is observing from node v
(there are no obstacles between the human position and that of the robot). In that case, it
can detect the person correctly (Figure 4). Moreover, to avoid a loop as in Figure 3 can
be generated by simply moving back and forward on the same edge, we impose that the
robot can change route at intersection points, but never turn back where it came from.

3.1.1 States

The state includes the intersection point at which the robot is making the decision and
the incoming node from which it comes from. To achieve a decision planner that takes
into account the possibilities and quality of replanning routes, we then propose to add
as part of the state a tuple representing the possible observations the robot can make in
the current node. Observation “1” means that the robot detects at least one person on the
observed edge of the homotopies graph, and observation “0” means that no people are
seen in the corridor.

The generic state of node i, with predecessor i
formally expressed as:

. .1 .2
»» and observations (i,,17...) can be

=1, 1y, (0, i5-.)) (5)

For example, the states associated with node i having three incoming nodes h;,i = 1,2,3
are:

i : {<l’ hl’ (0’ 0)>’ (i’hl’ (0, 1)>’ <l, hla (1’ O))’ (i’hl’ (1s 1)>a
<i) h21 (0: O)): (i’hz, (O; 1)): <l) h2’ (1: O))x (i’hz, (1; 1)):
(i: hS: (O’ 0))’ (i’hB’ (07 1))} <l: h37 (1’ 0))’ (i’h39 (1: 1)>}

Where i is the current node, h,,h,, h; are the possible predecessors of node i, the
combination of 0 and 1 are the possible observations the robot can make on the two
remaining edges (not the predecessor). The elements of the observation vector are ordered
by the indices of the neighboring nodes, starting from the smallest to the largest. Some
examples are reported in Figure 5.

The number of states will be for each node 1,204V, where u; is the number of outgoing
edges that refer to the node. This applies to all nodes except for the start and goal. For
the goal, we will only have one state, in which the process remains with probability 1
after the system reaches the goal. As the start and goal are added by identifying the
edge on the homotopy classes graph on which they lie, they are each always connected
to exactly two other nodes. For the start node, we will not have a predecessor node, so
we will only have the four states s : {(s, (0, 0)), (s, (0, 1)), (s, (1,0)), (s, (1,1))} associated
to the two edges to which the start node is connected. The total number of states will
be n, = Zﬁil(uizui_l) + 5, where N is the number of nodes in the homotopies graph,
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Figure 6: Possible next states by taking action a, from state (0, 4, (0, 0)).

excluding the start and goal. In this way, the number of states increases only linearly when
augmenting the number of nodes (when the map complexity increases). Moreover, it does
not depend on the number of people in the environment.

3.1.2 Actions

We consider as actions the choice to go through the different edges belonging to the
outgoing star from each node (except from the one that returns to the predecessor node).
The actions will not be the same for each state, a, would be the action that sends the robot
to the minimum index node connected to the current node, a; to the second minimum
index adjacent node, and so on. For example, in all the states of node “0” with predecessor
node “4” in Figure 6 we will have two actions:

0:{ay : “Tonode 1", a; : “To node 2"}.

The total number of actions will be n, = max;c, {u; —1}.

Figure 6 shows all the states the robot may reach by choosing action a, starting from
state (0,4, (0,0)). Once the action is chosen, the next node and the previous node are
deterministically known, the uncertainty is in the possible observations the robot will
make from the next node.

3.1.3 Transition probabilities matrix

The P matrix encodes the probability of making a tuple of observations at the next
node, starting from a node with known tuples of observations. We represent the generic
element of P as: Pla,, (i, i), (i},i2...)), (j, j,» (j}, j2...)) ], where a, is the considered action,
(i,i,,(il,i2...)) is the state corresponding to the current node i, (j, j,, (j!, j...)) is the state
we may reach by taking action a,.

The P computation algorithm is reported in algorithm 1. When we select an action,
the next graph node is deterministic, so P[a,, (i,1,, (i},2,...)), (J, j,, (G}, jZ, .. )] would
be 0 if j # i(a,) or j, # i (line 6).

When j = i(a,) and j, =i, Pla,, (i,i,, (i%,i%,...)), (j, i, G1, 3% .. N1 =TT,y po(0bs =
jg) (line 8), where e are all the u ; edges from the node j, p, is the probability of making a
certain observation, and obs = j¢ is the observation (0 or 1) that the robot will make from
node j on that edge. By doing so, we are approximating observations in different edges as
independent.

For every edge starting from j, the probability of making an observation equal to 1 is
the probability that at least one person is in the visible part of the corridor looking from
node j. For every possible number of people in the environment n, the probability that



H2020-ICT-2020-2: 101017274 DARKO Deliverable D6.2

obs = 0 is the probability that all n people are outside the visible region of the selected
corridor.

Once the goal is reached, the process remains in the goal state with probability 1, so
the probability to reach any other node is 0. (lines 10-11).

Algorithm 1: P Matrix

Data: actions, states, p,(obs)[node][edge]
Result: P(a xs xs)
1 for a, «< 0 to actions do

2 for i in graph nodes do

3 if i # goal then

4 for j in graph nodes do

5 if j #i(a,) or j, # i then

6 | Pla, (i,i,,(i,i2,.)), (G Jp, (2, 32,01 =0

7 else

.. . . .. . . u; .

8 | Plag, (i,ip, i1, i2,.)), (G dips G 20N = T 1.2 Poobs = j©) ;
9 else
10 Pla,, (i),(i)]=1;
1 L P[azi(l>:<]:.]p:(]§9]§’))]:0:

3.1.4 Rewards matrix

The rewards matrix (R) with dimensions (s x a) will have the following form:

CSpap " CSpa;  r+ TCsa,
R= : : : : , (6)
a0 TCSpa vt TGS,
0 0 - 0

where Cs,a, TEPrESEnts the expected cost of the edge that we will choose from the node
corresponding to state S; if action a; is selected. The last line, the one associated with the
goal state, is O because it corresponds to the fact that once the goal is reached, the system
remains in a fictitious state with cost 0.

The edge cost if k humans are on it, ¢, ., according to (4) is:
Ce =l +keyledge]. (7

The expected edge costs that we need to compute as elements of the R matrix, will be:

N,

c=le+2p(k|obs)kcp[edge], (8
k=0

where [, is the length of the path connecting the two nodes, p(k|obs) is the probability
that there are k people in the corridor given the observation obs made in the current node,
cp[edge] is the severity coefficient for that edge (see Section 3.2.1).

In our scenario, given a current state and an action, the edge to be traversed is
deterministically identified, so the R matrix entries will not depend on the arriving state.

We show explicitly how matrices P and R can be computed in Section 3.2.5. Once the
P and R matrices are computed, the MDP-O optimal policy can be found by solving the

10



H2020-ICT-2020-2: 101017274 DARKO Deliverable D6.2

Bellman equation with classical methods, for example using the Value Iteration algorithm.
The Bellman equation provides a recursive decomposition of the value function, which
the Value Iteration algorithm uses to update the value of each state until convergence
iteratively. We use y = 0,9999 as the discount factor to ensure that long-term rewards are
well considered.

We refer to this formulation as MDP-O (MDP augmented with Observations).

3.1.5 Modifying the Optimal Policy Online

This formulation has undoubted advantages in terms of the tractability of the problem,;
however, it has some limitations. An MDB by its inherent property, does not take past
history into account (similarly to, e.g., the reset property). Therefore, the probability
of making certain observations will not depend on the observations already made. This
implies that, if the severity of passing in an occupied edge is higher than the expected cost
of returning to the same node by a different path, and here making a different observation,
the MDP-O can underestimate the expected cost of taking that route and perform a loop
during the execution of the path (Figure 3).

To account for this phenomenon, the MDP-O is solved the first time before starting, and
an optimal policy is computed. This policy gives the optimal actions that should be taken
from each possible state. Then, during the online execution of the path, the MDP-O is run
again every time a person is seen, by adjourning the probability of observing someone for
that edge as p(obs = 1|h) = 1 where “R" represents the event “human seen in the edge".
We adjourn P by changing p(obs) for both nodes on that edge, regardless of visibility.
Then, we rerun the Value Iteration algorithm and compute the new optimal policy. This
strategy is efficient in avoiding loops. However, in the policy computed offline, in the
presence of the previously described conditions, the nodes’ cost may be underestimated,
as the expected cost of moving along the loop and performing a different observation is
accounted for instead of passing on the occupied edge.

3.2 Risk-aware routing in a shared dynamic environment

In the following, we present how our approach can be applied to account for the risk
associated with human encounters in route selection in a shared dynamic environment.
We outline a method to output the best strategy to follow starting from a black-and-white
picture of the environment, and some information on human distributions.

The method is divided into four phases:

I. Homotopy classes Graph Computation: in this phase, from the image of the envi-
ronment, we generate our homotopy classes graph and compute static properties
(Section 3.2.1).

II. Adding Start and Goal: in this step, we add the starting point, the goal and connect
them as nodes to the previously computed static graph, modifying the properties of
the involved edges accordingly.

III. Compute the optimal policy: determining the homotopy class that minimizes the
risk of encounters in the environment corresponds to finding the “best" policy along
the homotopy classes graph. In this phase, we model the problem as an MDP-O
(Section 3.2.5).

IV. Modifying Optimal Policy Online: as discussed in Section 3.1.5 the produced offline
policy may be suboptimal and generate loops in certain conditions due to the reset
property. As a consequence, in this phase, the optimal policy is modified online each
time a human is detected.

11
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Figure 7: Methodology overview: starting from a black-and-white picture of the environment
the homotopy classes graph is generated offline. In this step, we also compute graph edge
properties and expected costs. When a start and goal are selected, the graph and its properties
are locally modified. The MDP-O resolution algorithm is run to find the optimal policy. Online,
the robot moves with the precomputed policy, which is modified online when needed.

The methodology overview is reported in Figure 7.

3.2.1 Homotopy classes graph

To compute and characterize the homotopy classes graph, we first compute the edges of the
generalized Voronoi diagram of the static map. Given a set O = 04,04, .., 0,, of geometrical
objects such as lines and polygons (representing walls and obstacles in our scenario) a
generalized Voronoi diagram is a partition of the plane such that each region contains
the closest points to a particular geometrical object o;. A Voronoi edge is the boundary
between two regions. We take the Voronoi edges from the generalized Voronoi diagram
and use them to create a graph ¢ = (V, E). To this aim, we select the intersection points
of three or more branches of the generalized Voronoi diagram. These intersection points
together with the goal and the starting position of the robot will be the nodes in V of the
homotopy classes graph. The edges E would result from the chains of the Voronoi edges
that connect them. Using this graph, we consider the path with the lowest static collision
risk (i.e., the path with the highest distance from obstacles) for each homotopy class. We
will use this single candidate to compute all the static properties of the corridor (such as
length and visibility) that will be needed to model the problem.

We start by computing static properties depending on the homotopy’s graph geometry.

3.2.2 py - Human Probability

The human probability, p;,, represents the relative probability that a person is on an
edge, instead of that on the others. For example, by assuming that people are uniformly
distributed, we obtain:
[
prlel= l—e 9

t

where [, is the homotopies graph edge length, and [, is the length sum of all edges.
However, any probability distribution can be used as long >, prle] = 1.
3.2.3 p, - Visibility

When there are people on the edge, the probability of seeing them is equal to the probability
that they are on the percentage of the edge visible from the node from which the robot
makes the observation. A point from the edge is considered visible from the node when the

12
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line connecting them does not encounter any static obstacle (see Figure 4 for 1,[S][(S, G)]
visualization). For example, in the case of uniform human presence probability along the
corridor, the probability that a single person is in the visible region of the homotopy class
would be:

_Lve)
==

[, is computed by discretizing the Voronoi chains and by checking if each edge point is
visible from the adjacent nodes.

py[v]le] (10)

3.2.4 ¢, - Severity Coefficient

The severity coefficient c, is the penalty we add in our metric each time an encounter
between the robot and a human happens. To quantify this variable, we consider the
consequences of a human-robot encounter. The possible consequences are:

* The robot must slow down or stop for safety reasons.

* If there is enough space the robot can locally replan a new route in the current
homotopy class.

* To pass, the robot has to enter the human personal space, causing stress and mental
fatigue [22].

* If the robot is transporting a huge amount of load, the interaction can be perceived
as not safe.

All these undesired events depend on the human-robot distance. Therefore, the
performance and the possibility of performing a safe replanning are strictly connected
with the width of the corridor.

The severity of encountering a human will not be the same for all corridors on the
map. It will depend on the robot’s size, its load, and the geometric width of the corridor.

We consider a linear dependence of the severity coefficient with the corridor width
and propose the following formulation:

¢, = max (0, min (—k;(w, —w,) + k, k3)) (11

where w, is the corridor’s minimum width, w, is the robot’s width, and the coefficients
are chosen according to the specific application scenario (robot mass, robot target speed,
human familiarity with the scenario) so that the severity coefficient for each corridor spans
between 0 and k;. w, is computed from the generalized Voronoi diagram by checking
the distance to the nearest fixed obstacle on discretized points along the Voronoi graph.
This severity criterion encompasses both the time the robot will incur by decelerating or
halting to ensure a smooth and risk-free local re-planning, as well as the psychological
strain experienced by the human operator.

3.2.5 MDP-0O Formulation

We now first compute P and R matrices by assuming people are static during the robot
route execution (e.g., they are working in specific locations of the environment), and
then extend to a scenario where some people may enter the corridor while the robot is
already moving in it. For simplicity, we approximate static and dynamic people in the
environment modeled by two known independent distributions. We consider an encounter
to happen when a person is already in the chosen corridor and when a human enters the
corridor in the opposite direction while the robot moves in it. In the following, we denote

13
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the probabilities relative to the static people distribution as p;(-), the ones relative to the
moving people distribution as p,,(-), and the probabilities accounting for both as p(-).
For example, in case the presence of static humans in all the environment follows a
binomial distribution, given n,.,, mean number, N, maximum number, and 0 minimum
number of people in the environment, the probability that there are n static people is:

N -
Pn = (Np) (—"; )n (1 — —”lf:[) " (12)
n P P
3.2.6 P matrix

To explicitly compute matrix P with algorithm 1 we need to compute p,(obs). The
probability that all n people are out (obs = 0), or at least one is in (obs = 1) the visible
region of the corridor is:

NP
Ps0(0bs) = D p,((1=p,py)")' " (1= (1 = p,py)")°". (13)

n=0

3.2.7 R matrix

To compute R matrix, according to (8), we need to explicitly compute p(k|lobs). By
applying the Bayes rule, p(k|obs) becomes:

p(obs|k)py (k)

p(klobs) == e)

where p,(-) represents the probability of encountering k people while passing through the
corridor.

The probability of making a certain observation from a node on an adjacent edge is
the same already computed in (13). The probability of making an observation of O or 1
when in the corridor there are k people, p,(obs|k), depends on the visibility probability
computed in (10). If there are no people (k = 0) p,(obs = 0|k = 0) = 1. Otherwise,
(k > 0), p;(obs = 0]k) is the probability that all persons are in the not visible portion of
the corridor. p,(obs = 1|k) is the probability that at least one person is visible. In general
form, it would be:

ps(obs|k) = (1 — p, )KE=obD(1 — (1 —p,)k)oPs. (14)

The probability that there are k people in the corridor would depend on human presence
probability (9). For each possible number of people in the environment n, the probability
that k of n humans are in the corridor is

NP
psx(k) = an(Z)(ph)"(l —pp)" . (15)
n=0

3.2.8 Extension in presence of Moving People

We model the presence of moving people alongside stationary ones by considering them
as independent distributions. Let us denote p, as the probability that in a time unit (e.g.,
1s), a person enters a corridor in the direction opposite to the robot’s movement. Calling
T the time (rounded to the nearest integer) the robot takes to traverse the corridor, the

14
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probability p,, that, while the robot is in the corridor, k people will enter the corridor itself

1S:
T
Pr(k) = ( k)p’;(l )T, (16)

The probability of making a certain observation from a node does not change if some
persons enter the corridor, as the observation is instantaneous and the visible portion of
the corridor is the same. The P matrix will therefore maintain the same formulation

po(0bs) = p; ,(obs). 17

To compute the total probability that the robot will encounter k people in the corridor,
we notice that of these k people, a certain number, j will be static and already in the
corridor when the robot chooses it (in the visible part or not), and k — j would not be yet
in the corridor, but will enter while the robot is traversing the corridor. This probability
can be written as:

k
(k) = D Py k(DIPmck— J)- (18)
j=0
The probability of making a certain observation assuming that we will encounter k
people in the corridor p(obs|k) takes now into account the fact that, as we modeled the

problem so far, the (k — j) people not yet in the corridor are certainly not visible. The
probability that if the robot encounters k people, j are static is:

pk1NDPG) _ Pmilk—Ips())
p(k) px(k)

p(jlk) = (19)

As a consequence, we have:

k
plobslk) = > p(jlk)p,(obs|j). (20)
j=0

To computed P and R matrices, we solve the MDP-O with the Value Iteration algorithm
as described in Section 3.1.

3.3 Validations

We tested our problem modeling in three different environments with increasing map
complexity. Each map highlights different aspects of our formulation. The first and the
second maps are used to compare our approach with more classical algorithms, and the
effects of varying the severity coefficients c,, human density, and moving people’s presence
in the overall performances.

To compare our approach with reactive strategies, we define an expected cost graph
%:c(V, E), having the same nodes and edges of ¢, but the weight of each edge is given by:

NP
c. =1, +Zpk(k)kcp[edge]. 21
k=0
We can compute the path with the minimum expected cost, approximating edge costs as
independent, for example, by applying an A* algorithm to ¥.
We also use, for comparison, a modified A* algorithm that every time a ¥ node is
reached (including S), the cost of its outgoing edges star are updated as:

N,

o=l +Zp(k|obs)kcp[edge], (22)
k=0
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Table 1: Small Map: Costs, Encounters and Lengths for the paths obtained with 10000
simulations, p, = 0 and hum,,;, = (0,2,10)

=5 ¢, =20 ¢, =40
Cost Encounters Length Cost Encounters Length Cost Encounters Length
MDP-O 20.59+0.06 0.42+0.01 18.50+0.01 25.85+0.20 0.21+0.01 21.65+0.06 29.78+0.37 0.20+0.01 21.64+0.06
A* 21.07+£0.07 0.55+£0.01 18.32+0.00 29.70£0.29 0.57+£0.01 18.32+0.00 40.86+0.57 0.56+0.01 18.32+0.00

A*mod 20.59+0.06 0.42+0.01 18.50£0.01 26.34+0.24 0.38+0.01 18.80+0.03 33.89+0.48 0.38+0.01 18.81+0.03

and the new minimum-expected cost path is computed. Once an edge is traversed, it is
removed from the expected costs graph. To study the different effects of the c, choice for
the first two maps, we use different values of c,, fixed for all the corridors. Note that, as
we consider people as uniformly distributed in the environment, the path with the minor
probability of encountering a person, and so, in case of fixed c,, the one with the minimum
expected cost, is also the minimum length path. The third map, instead, is used to study
the scalability of our approach, and the effects of having different severity coefficients on
portions of the environment. For the third map, the severity coefficient for each corridor
is found using (11). The framework has been implemented in Python on a i7 2000 MHz
12-th Gen Intel processor with 16 GB of RAM memory.

To obtain the generalized Voronoi diagram from the environment map picture we use
the code available in [12] *. The MDP-O is solved using the Value Iteration algorithm with
the Markov Decision Process Toolbox for Python 2.

For each simulation, a random number n of people between 0 and N, are considered
as static in the environment (e.g., performing a task in a certain position), with n,,,,, the
mean number of static humans that will be present in the environment. From now on,
this information will be expressed as hum;, s, = (0, Myeqn,N,). The n extracted people
are randomly located along the homotopy classes graph with uniform probability. For
simulations where we consider the presence of moving people, to compute the probability
that kK humans will enter the corridor while the robot is in it, we use (16), by taking p,
constant and equal for all warehouse corridors. Robot velocity is considered 1 m/s, so T
is each corridor’s integer rounded path length. The performances of the three algorithms
are compared for each random human configuration.

For each scenario varying hum,, p., ¢, we perform 10000 simulations when only
static people presence is considered, and 20000 when we account for people entering the
corridor while the robot traverses it (in this case, the degree of freedom in each simulation
is higher).

Unless otherwise specified the results in the tables are presented as the sample mean
+1.96SE, where SE is the standard error of the mean. This interval corresponds to a
95% confidence level, assuming the sampling distribution of the mean is approximately
Gaussian, in accordance with the Central Limit Theorem.

3.3.1 Small Map - Replanning Possibilities and Visibility

In this map, we consider fixed start and goal positions. The path associated with the
minimum expected cost according to the A* algorithm is the one that directly connects
the start and end nodes. However, this path does not present escaping possibilities when a
person is in it. Moreover, from the start node, only a portion of the corridor is visible, so
even if the observation is 0, there is still a high probability of making an encounter. The
map has eight nodes, six from the homotopy classes graph, plus the start and goal, for a
total of 77 states and 2 actions.

https://github.com/ross1573/generalized_voronoi_diagram
2https://pymdptoolbox.readthedocs.io/en/latest/
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Figure 8: 8a): Map of the small warehouse. 8b-8e): Examples of path results in the small
map from a fixed starting position (in orange) to a fixed goal (in green). Severity: c, = 30,
hum;,¢, = (0,2,5), p, = 0.005. Path colors: MDP-O (Pink), A* (Blue), A* mod (Red). Static
people are presented as red dots, moving people entering the corridor while the robot is in it
are presented as a green arrow indicating the moving direction.

Table 2: Small Map: Costs, Encounters and Lengths for the paths obtained with 10000
simulations, p, = 0 and ¢, = 30.

humy, ¢, = (0,1,3) hum,, = (0,2,5) humy,z, =(0,4,8)
Cost Encounters Length Cost Encounters Length Cost Encounters Length
MDP-O 22.78+0.16 0.07+0.01 20.83+0.05 27.52+0.27 0.19+0.01 21.73+0.06 40.73+0.46 0.60+0.01 22.67=+0.06
A* 26.50+0.29 0.27+0.01 18.32+0.00 34.46+0.40 0.54+0.01 18.32+0.00 52.19+£0.58 1.13£0.02 18.32+0.00

A*mod 24.10£0.25 0.19+0.01 18.49£0.02 29.71+0.34 0.37+£0.01 18.76+0.03 42.19+0.49 0.76+0.02 19.48+0.05

The map is presented in Figure 8a, together with its homotopy classes graph. It has
dimensions 10 x 17.5 m. Some paths, resulting for the three algorithms with different
conditions and human configurations, are reported in Figure 8.

In Table 1 we report the results obtained with 10000 simulations, by varying the
severity coefficient c, for hum;,;, = (0,2,5) and p,,,, = 0. For a low severity value
(cp = 5), the algorithm derived from the MDP-O formulation behaves like the A* mod
algorithm, passing on the left side of the big wall (unless a person is present in the visible
part of the corridor). In this scenario, the paths resulting from the two algorithms are
the same. When severity increases, MDP-O policy is to pass in the central corridor, even if
the length is higher. This increases the possibility of avoiding an encounter, resulting, on
average, in a lower cost.

In Table 2, we present the results of 10000 simulations, by varying hum;, s, parameter.
The mean cost obtained using the MDP-O policy is always slightly better than the cost
obtained with the reactive strategy of the A* mod algorithm. In Table 3 we show the results
in the presence of moving people in the environment, performing 20000 simulations for
each scenario. For p, = 0.05, there is a high probability that people enter the corridors
while the robot is traversing them. This means that the value of observations is reduced,

Table 3: Small Map: Costs, Encounters and Lengths for the paths obtained with 20000

simulations, ¢, = 30 and hum,,;, = (0,2, 5)

Pp. = 0.005 p. =0.01 p, =0.05

Cost Encounters Length Cost Encounters Length Cost Encounters Length

MDP-O 31.09+0.24 0.31£0.01 21.71+0.04 34.24+0.28 0.42+0.01 21.69+0.04 58.22+0.47 1.31+0.02 18.78+0.02
A* 37.71+£0.32 0.65+0.01 18.32+0.00 40.57+0.34 0.74+0.01 18.32+0.00 62.57+0.49 1.48+0.02 18.32+0.00
A*mod 32.84+0.28 0.47+0.01 18.78+0.02 35.75+0.30 0.56+0.01 18.80+0.02 58.22+0.47 1.31+£0.02 18.78+0.02
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and so, for this map, is more convenient to pass as first-choice on the left side of the wall,
resulting in the same policy of the A* mod algorithm. In the other tested scenarios, the
MDP-0O approach performs better.

35 3
30 E a 30 EF
25 25

o ok

51 ;' 5 5 - i

0 o 0

6 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
X [m] XIml X [m]
(d (e ®

Figure 9: 9a): Map of the medium warehouse. Path colors: MDP-O (Pink), A* (Blue), A* mod
(Red). Static people are presented as red dots, the entrance of moving people as green arrows.
9b-9d): Examples of path results in the medium map from a fixed start position (in orange)
and goal (in green). Severity: ¢, = 30, hum;,;, = (0,6,12), p, = 0.005. 9e) For c, = 5,
hum;,¢o = (0,6,12), p, = 0 the MDP-O executes the same policy as the A* mod algorithm.
9f) For ¢, = 20, hum,,;, = (0, 6,12), p, = 0 the A* mod algorithm does not replan even if a
human is seen in (9,8) corridor.

3.3.2 Medium Map - Cost of the Alternative Routes

Within this map, we test the ability of our approach to account for the expected cost of
alternative routes. The map is shown in Figure 9, along with some path obtained by
varying human configurations and parameters. The map has 12 nodes plus the start and
goal, for a total of 149 states and 2 actions. The start and goal are fixed and the single path
associated with the minimum expected cost is the one passing left to the long obstacle in
the middle. However, by passing right, the length of the alternative routes in case the first
choice corridor is occupied, is minor. The environment has dimensions 30 x 35 m, and ¢
is kept constant for all the map corridors. In Tables 4, 5 are reported the results for 10000
simulations, by varying human densities and the severity coefficient. In Table table 6
the results of 20000 simulations, obtained by varying the entering probability p,, are
presented.

In this scenario, the MDP-O algorithm performs as the A* mod only for the scenario
with ¢, =5, in the other case studies it leads to a smaller mean cost. Depending on the
selected parameters, A* mod algorithm may choose to remain on the A* path even if a
person is seen, as the estimated expected cost of the best alternative route is higher than
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Table 4: Medium Map: Costs, Encounters and Lengths for the paths obtained with 10000
simulations, p, = 0 and hum,,;, = (0,6,12)

=5 ¢, =20 ¢, =40
Cost Encounters Length Cost Encounters Length Cost Encounters Length
MDP-O 45.37+0.09 0.94+0.02 40.70+0.03 56.18+0.31 0.53+0.01 45.49+0.11 67.10+0.60 0.53+0.01 46.08+0.12
A* 46.20+£0.10 1.20+£0.02 40.18+0.00 64.76+0.41 1.23+£0.02 40.18+0.00 88.64+0.82 1.21+£0.02 40.18+0.00

A*mod 45.37+0.09 0.94+0.02 40.70£0.03 59.13+0.37 0.89+0.02 41.25+0.06 72.47+0.67 0.71+£0.02 44.02+0.12

Table 5: Medium Map: Costs, Encounters and Lengths for the paths obtained with 10000
simulations, p, = 0 and ¢, = 30

humyyg, =(0,2,5) humg,g, =(0,6,15) hum;,s, = (0,10,15)
Cost Encounters Length Cost Encounters Length Cost Encounters Length
MDP-O 46.66+0.21 0.09+0.01 43.87+0.09 61.53+0.46 0.53+0.01 4557+0.11 82.66+0.67 1.21+0.02 46.21+0.11
A* 52.52+0.36 0.41+0.01 40.18+0.00 76.98+0.63 1.23+0.02 40.18+0.00 101.09+£0.78 2.03+£0.03 40.18+0.00

A*mod 48.03+0.27 0.20+0.01 42.03+0.10 6542+0.51 0.71£0.02 44.22+0.13 86.16+£0.70 1.38+0.02 44.70+0.13

the cost of making the encounter on the first-choice path (Figure 9f). However, this is
not necessarily the best option, as more replanning possibilities are present after the first
rerouting edge (9, 7) is taken. In the scenario represented in the picture, MDP-O policy
takes the path on the left from 12 as (12,0) is occupied and then decides to take (9, 7) to
avoid the person in (9, 8).

Figure 10: 10a): Map of the big warehouse. 10b): Path results in the big map with random
starting positions (in orange) and a fixed goal point (in green). Different path colors represent
different paths founded by the MDP-O policy changing the starting position in the same human
configuration. Static people are presented as red dots, the entrance of moving people as green
arrows. Results obtained for hum,,;, = (0, 20, 30), p, = 0.005.

Table 6: Medium Map: Costs, Encounters and Lengths for the paths obtained with 20000
simulations, ¢, = 30 and hum,,;, = (0,6,12)

p. =0.005 p.=0.01 p. =0.05
Cost Encounters Length Cost Encounters Length Cost Encounters Length
MDP-O 68.29+0.38 0.76+0.01 45.53+0.08 75.14+0.43 0.99+£0.01 4549+0.08 128.86+0.69 2.88+0.02 42.36+0.03
A* 82.77+0.47 1.42+0.02 40.18+0.00 88.73+0.51 1.62+0.02 40.18+0.00 138.07+0.72 3.26+0.02 40.18+0.00

A*mod 71.74+0.41 0.92+0.01 44.10£0.09 78.75+£0.45 1.16£0.01 44.07£0.09 131.10£0.70 3.01£0.02 40.68+0.02
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3.33

Table 7: Computational times for the case study maps, 100 trials.

time[s]

Before Starting MDP-O Resolution  Online Modification

SmallMap 1072(2.5+0.7) 107%(4.0+1.2) 1073(1.3£0.1)
Medium Map 107%(1.6+0.1) 107%(7.8%7.6) 1073(7.0 £ 4.3)
Big Map 10°(1.5+0.3) 1072(3.2+£1.3) 1071(2.7£0.8)

Big Map - Scalability and Severity

In this case study, we test our approach on a complex map of big dimensions. The picture
of the environment is taken from [8], and represents a real warehouse (real dimensions
are not provided). We consider the map to have dimensions 210 x 35 m. The map has 157
nodes, for a total of 2499 states, and 3 actions. We use this map to study the scalability
of the proposed approach and how severity influences the policies starting from various
starting positions. Severity is static and obtained using (11). The coefficients are chosen
so that if the corridor is wider than w, 4+ 5 m the severity is 0 if it is narrower than w. +1m
the severity is 50. In this way, we have: k; = 12.5,k, = 62.5, k3 = 50. We take w, = 1m.

In each simulation, a random starting position is chosen, the start and goal are added
locally modifying the graph, the properties of the newly added edges are computed, and
the MDP-O optimal policy is found. Figure 10 shows the map picture and an example of
path obtained in previously described conditions, starting from different starting positions
in the environment (in the same randomly extracted human presence configuration). We
can see that the MDP-O algorithm prefers slightly longer paths that include wider corridors,
where the severity, in case an encounter happens, is lower.

Table 7 reports the computational times for the MDP-O formulation for the Before
Starting, MDP-O resolution, and online modification parts, for the three maps. The data
are expressed as mean + standard deviation in this case. The “Before Starting" phase
includes the local modification of the static graph and its properties to include the start
and goal and the first MDP-O solving (not the offline preprocessing phase). For the small
and medium maps adding the start and goal to the map is also done by randomly selecting
a different start in each simulation. Most of the time is spent computing the visibility
property for the modified edges, so it is strictly dependent on the length of the edge to
split. The “MDP-O Resolution" column highlights the computational time needed to solve
the MDP-O using the Value Iteration algorithm. “Online Modification" indicates the time
required to modify the policy online by adjourning the P matrix and rerun the MDP-O
online when a human is seen.

Risk-aware local planning and control

At the local level, the robot must make rapid decisions to adjust its path, ensuring safe,
smooth, and easily interpretable movements. To address uncertainty in coordination with
the MPC planner, we propose to leverage two key components:

* Risk maps, which highlight nearby spatial risk factors based on the current level of
uncertainty.

* An active sensing module, which guides the robot’s movement to actively reduce
uncertainty.

Note that, this level while avoiding collisions does not formally guarantee human safety.
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Human safety is explicitly managed by the safety layer developed in T6.4, which ensures
safe controls by reducing the velocity when necessary.

4.1 Risk maps

4.1.1 Collision Probability Map

This module aims to construct a collision probability map M using the estimated robot
pose, the tracked obstacles, and the uncertainties associated with those measurements.
The map assigns to each cell the probability that the robot would collide with at least
one obstacle if the robot’s center were placed in that cell with the current localization
uncertainty. The map has fixed dimensions and is centered on the robot’s current position,
thus giving a local environment collision risk representation.

To ensure accuracy, we consider both the uncertainty of the robot’s pose and the
uncertainty of the obstacle’s position on the map. Although these quantities originate from
the same lidar measurements, they are treated as independent because of their distinct
sampling processes and the assumption of no systematic errors. Moreover, to adopt a con-
servative approach, the robot’s orientation is not taken into account. Hence, we assume the
robot has a circle footprint with a radius of r,g, = % v/ (width robot)? + (height robot)2.
We consider the robot’s real position described by a 2D normal distribution, having as
variance oix and O'i ) derived from the covariance matrix of the localization algorithm.

For each obstacle, instead, we consider the estimated position of the centroid and
bounding box dimensions derived from a Kalman filter used for objects detection and

tracking. Each obstacle position would been associated with a variance denoted as ai .

and 02 .

The idea behind the collision probability map is that each cell ¢, of the map M is
associated with the probability of collision between the robot and obstacles in the event
that the center of the robot is located in c,,.

Consider the robot with center in ¢,, = (X,,Y;) and an obstacle O; with center ¢, =

(X,,,Y,,), and dimensions (W;, }Ali). We set:

AX = X,—X,, AY =Y, —Y,,

i

both treated as independent Gaussian random variables:
AX ~ JV(‘U/AX’ GZAX); AY ~ ‘/V(MA}/J O-ZAy):

2 _ 2 2 2 _ 2 2 . .
where oy = o7 + 0y x> Oay = O, +0, ,assuming these errors are independent.
The means pay, Uay are (X, =X, ), (¥, =Y, ).

When measures are deterministic, we have a collision between the robot and the
obstacle when:
hi

Wi
5 2 + Ty robots

‘AX‘ < 2 + Tx robot and )AY‘ =
where . oho a0d Ty ohor TEPresent the projections of the robot’s radius along the x and
y axes, respectively, determined by the relative distance between the cell c,, and the
obstacle’s center c,. So, in the presence of uncertainty, the collision probability for each
obstacle is

Peoii = P(IAX| <A,) x p(laY|<A,),
where

A, =

N2

B
oy
+ Ty robot> Ay - E + ry,robot'
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For a 1D Gaussian variable AX ~ A (u,,, 03 ), the probability that |AX| <A, is:

p((IaxX] <A,) = of fstor ) — of Latiar),

where ®(z) is the CDF of the standard normal distribution, that we can numerically
compute as:

®(z) = %[1 + erf(%)].

While the collision probability for static obstacles is computed directly using their fixed
position and uncertainty, dynamic obstacles require trajectory prediction over discrete
time steps, with their worst-case occupancy considered in the final map M. For dynamic
obstacles O, ;, we consider the obstacle occupancy as the union (computed as the maximum
for each cell) of the obstacle’s estimated position after k =0, 1,2 seconds:

Peolld,i = mane{o,1,2}{Pcon,i}-

If we denote with N the number of obstacles, each with a collision probability p. ;
(computed as above) and considering collision with different obstacles as independent
events, the probability that at least one obstacle collides is the union of events:

N

Peon(Cn) = 1 — l_[(l_pcoll,i(cm))-

i=1

Figure 11 depicts an example of the computation of the probablhty occupancy map
M, considering two static obstacles, O, and O,, and a dynamic one, O,. Figures 11a-c
illustrate M, with k =0, k = 1, and k = 2, respectively. In these Figures, the color intensity
gradation represents the decreasing probability of each cell being occupied.
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Figure 11: Obstacles Occupancy Probability Map M, in three different times instances k =
0,1,2 in an environment with two static obstacles O, O,, and a dynamic one 0,: (a) M,,
(b) M;,(c) M,. The transition of colors from dark to light indicates a decreasing occupancy
probability value.
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<)

Figure 12: Obstacles Occupancy Probability Map M where each cell is associated with the
maximum occupancy probability among the probabilities in M,,, M;, and M,.

Figure 12 presents the final map M obtained at the current time k = 0, taking into
account the object’s maximum probability across M, with k =0, 1,2 for each cell.

4,12 Static risk maps

Static risk maps include a localization failure risk map and additional maps representing
known risk areas. The localization risk map is a 2D discrete representation of the environ-
ment that encodes the risk of getting localization errors for all traversable regions. We
presented it in [5]. This map is based on the notion of alignability [17], defined as the
capacity of a given scan coming from a range-based sensor to be aligned with subsequent
scans. The higher this capacity is, the lower the risk of localization failure.

Other static risk maps may include known areas where it is preferably for the robot to
not enter due to the likely presence of objects difficult to detect, or high congested areas.

4.2 Active sensing layer for task failure mitigation

The successful execution of robotic tasks, particularly in uncertain environments, critically
depends on the quality and quantity of the available sensory information. In such scenarios,
it becomes imperative to integrate active sensing techniques to mitigate localization and
environmental uncertainties, consequently reducing the risk of task failure. Traditional ap-
proaches incorporate active sensing within control frameworks by maximizing information
acquisition [14, 7], often without explicitly addressing the system stability and safety. In
response, we propose a novel approach centered around a new Control Barrier Function
(CBF), termed Information-aware CBF (I-CBF). This formulation ties safety to the sensory
information required for successful task execution. CBFs have found diverse applications,
including maintaining Segway vehicle stability [10], enabling adaptive cruise control
[2], supporting lane-keeping systems [27], advancing legged robot locomotion [11], and
managing multi-robot systems [4, 13]. In our approach, however, CBFs are applied in a
novel manner, where we connect the safe set to the minimum information required for
task success. When integrated into a Model Predictive Control (MPC) framework, the
proposed I-CBF represents an active sensing layer, enabling the robot to dynamically adjust
its actions when sensory information is insufficient for accurate task execution. Moreover,
by combining [-CBF with Lyapunov Control Functions (LCFs) within the MPC framework,
the approach ensures both task stability and the optimization of sensory information
acquisition simultaneously.
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4.2.1 Optimal Active Sensing Control via I-CBF

In this section, we first introduce our I-CBF and subsequently present its integration within
an MPC framework.
Let us consider a robotic system described by the following affine-in-control dynamics

q(t) = f(q(£)) +g(q())(u(t) + w(t)) (23)
z(t) = h(q(t)) + »(1), (24)

where q(t) € 2 Cc R" and u(t) € % C R™ are the system’s state and the control inputs,
respectively. z(t) € RP represents the sensor outputs (i.e., the measurements available
through sensors at time t), and f : R® - R" and g : R" — R™™ are locally Lipshitz
continuous functions. Finally, h(-) represents the sensor model, ¥(t) ~ A4(0,R(t)) € R?
and w(t) ~ A(0,Q(t)) € R™ are white, normally-distributed Gaussian noises with zero
means and covariance matrices R(t) and Q(t), respectively.

During task execution, an estimator reconstructs the unknown robot state and the
environmental parameters. To ensure safe task execution with an acceptable risk of
failure r, the minimum amount of sensory information must meet or exceed a predefined
threshold. To quantify the sensory information, we utilize the smallest eigenvalue of the
Constructibility Gramian (CG), denoted as A,;,(¥.(t)). This metric has been demonstrated
in [23] as an effective measure for evaluating information content in nonlinear dynamic
systems.

Building on this foundation, we define our I-CBF by extending the framework proposed
in[1].

Definition 1 (Information-aware Control Barrier Function). Let € € 2 C R" be the
superlevel set of a continuously differentiable function B : 2 — R defined as follows

B(Q) = Amin(gc(t))_S)Lmin(dgc(t)) (25)

with q the system state and A, (4%, (t)) the desired minimum amount of information
ensuring the task succession with an acceptable risk of failure r which is linked to s by
Chi-Square likelihood, i.e.,
s=—2In (L) .
100

Then, B is a CBF if there exists an extended class #, function a(B(q)) = yB(q) such
that

sup [L;B(q)+L,B(q)u]>—yB(q) (26)

withy >0, Ly = ag—gf)f(q), and L, = aI;—Ef)g(q,u)

Therefore, any control input u that satisfies (26) ensures the minimum information to
complete the task successfully within the acceptable risk level r.

We now show how our I-CBF is integrated into an MPC framework for failure mitigation
in task execution.

Consider the dynamics (23) with output (24), and a generic observer that recovers the
state estimate §(t) of the unknown true state q(t) during motion by exploiting the current
sensor measurements 2(t). The task-aware optimal active sensing control algorithm that
ensures the minimum amount of information required to perform a given task with a
predetermined risk is derived by solving the following optimal control problem

Problem 1 (I-CBF MPC). Given the prediction horizon L, the control input u(t), the predicted
trajectory of the nominal system § obtained by applying u(t) starting from the state estimate
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§ (t;) provided by the employed observer at time t;, determine, Yt € [ty, ti, ], the optimal
control sequence sequence

%53
W= min f 13(7) — gre(llg,

ues(A),s t

+u() — () d @7

Gt + L) — gy llg, + V55
S.t.
§(6) = F@G(0) +g(@(EN(t) +w(1) (28)
q(te) =q(t) (29)
u<u(t)<u (30)
LeV(q(t))+ L V(q(t)u(t) +AV(q(t))—6 <0 (3D
L, B(q(6)) + LyBq(0))u(t) + 7B(g(t)) = 0 (32)

where S(A) is the family of piece-wise constant functions with sampling period A, and
(27) is a task-oriented objective function consisting of the state cost |G(7) — quf(T)llg, +
lu(t) — wef(7)ll, to measure the deviation from a reference trajectory and the final cost
|g(ti +L) —qylq, to steer the system to the final configuration. (28) is the nominal model
of the system, which is used to predict the state evolution starting from the initial state (29),
(30) are the control bounds and (31) is a Lyapunov constraint to ensure the stability of the
task, with A > 0 a design parameter that describes the convergence rate and 6 a relaxation
variable that ensures well-posedness of the optimal control problem penalized by a weight
vs > 0. To conclude, (32) is the safety constraint based on our Information-aware Control
Barrier Function.

4,22 Case study

To demonstrate the effectiveness of our approach, we tested it on a unicycle vehicle
navigating in obstacle-rich (risky) environments. Consider a unicycle vehicle with the
following kinematic equations

X cosf O .
j{ =|sinf O ([w]+w) (33)
] 0 1

where (x, y) represents the position of the vehicle in the plane, and 6 denotes its heading
angle. Here, v is the forward velocity, w is the angular velocity, and w is white Gaussian
white actuation noise with zero mean and covariance matrix Q. We consider only a
state estimation scenario, in which an EKF estimates the robot’s state using sensor range
measurements w.r.t. several landmarks. Let xy;, and yy;, denote the Cartesian coordinates

of the i-th landmark, each sensor output is given by h; = \/ (c—xy )2+ (y —ym )?

The chosen task consist in following a trajectory in an obstacle-rich environment with
the possible risk of collision. During task execution, the robot exploits sensor information
to avoid collisions with landmarks, safely reaching the desired goal position.

We define the reference trajectory, p(s), as a function of the parameter s with dynamics
governed by $(t) = v,(t) and s(t) € [0,1]. This parametrization yields the trajectory in
the form p(s) = [p.(s), p, (), po(s)]T. Subsequently, we reformulate the task execution as
a tracking problem, where a follower unicycle must track a leader unicycle. The leader
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unicycle position q;(s) (which represent q,.¢ in (27)) starts from the initial configuration
q;(0) = [px(O),py(O),pe(O)]T and moves along the trajectory p(s) with linear velocity
v;(s) and angular velocity w;(s), derived by leveraging the flatness [3] property.

To ensure stability during task execution, we define the Lyapunov candidate as follows

1
V(e) = 5(ef+e§)+K(1—cose3), K>0 (34)

which is a function of the tracking error e = [x —x;,y —y;,0 — 6,]". By choosing the
following control law, representing u,.¢ in (27),

Vier(€) = vy cose; —KA e

€ .
wref(e) =w;— Evl - 7"2 sines,

with A;,4, > 0, we obtain V(e) < 0 and then by using the Krasowski-Lasalle principle,
the G.A.S. of the equilibrium e = 0 can be demonstrated [24].

To safely perform task execution, we need to define our I-CBFs for obstacle avoidance.
By observing Figures 13a and 13b, safety is guaranteed if all the possible robot positions
remain within the desired estimation uncertainty circle (red circle in Figure 13b). As a
consequence, our I-CBF is defined as

B;(qa) = 2‘mil‘l((‘qc(t)) —S (drl(q) - (rr + ri))72 . (35)

where d,;(q)—(r, +1,)), and d,; = h;.

Note that, in this case study, unlike in Problem 1, v, is introduced as an additional
optimization variable. This implies that the velocities of the leader unicycle are also
optimized, ensuring the most feasible and efficient task execution.

(@) Unicycle vehicle state estimation (b) safety constraint for unicycle vehicle
state estimation.

Figure 13: Obstacle avoidance scenarios for unicycle case study. The robot and the i-th obstacle
sizes are represented with green and yellow circles, respectively. The estimation error ellipses
are drawn in light green for the robot and light yellow for the obstacle. The red circle represents
the safety boundary measured via a desired estimation uncertainty function of a desired CG
(i.e., dgc) which delineates the collision-free region for all the robot and obstacles possible
positions.
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4.2.3

Figure 14: Task for the unicycle case study. The reference path is drawn in light green. The
unicycle has to follow the path and avoid the three black cylinders located in the environment.

Statistical validation

In this section, we compare the results obtained by solving Problem 1 with the same problem
where: 1) the active sensing component is neglected and CBF constraints (35) is replaced
by the following classical inequality constraint for obstacle avoidance d,; — (1, + ;) = 0,
2) the active sensing component is neglected and the CBF is B! = d,; — (r, + 1), 3) the
active sensing component is integrated into the controller through a classical inequality
constraint, this is equivalent to set (35) equal or greater than zero.

Mean information | Mean estimation error | Mean task execution time [s] [ Mean computational time [s] | Task success rate
e, =0.060£0.034 m
MPC without AS without CBF 20.064 £ 0.782 e, =0.114£0.063 m 31.488 + 1.053 0.220 + 0.004 23.5%
ep = 0.043 £0.023 rad
e, =0.056+0.033 m
MPC without AS with CBF 21.051 £0.782 e, =0.111+0.061 m 35.633 £ 0.900 0.230 + 0.007 36 %
ey = 0.043 +0.023 rad
e, =0.043£0.020 m
MPC with AS without CBF 82.694 £ 7.915 e, =0.062+0.031 m 40 +3.738 0.260 + 0.009 51%
eg =0.043£0.019 rad
e, =0.045+0.021 m
Information-aware CBF MPC | 389.603 + 4.493 e, =0.039+0.019 m 56.996 + 3.167 0.157 £ 0.019 100 %
eg =0.057 £ 0.028 rad

Table 8: Comparison between MPC without active sensing without CBE MPC without active
sensing with CBE MPC with active sensing without CBE and MPC with active sensing with CBF
(i.e. our methodology with the information-aware CBF). The mean values are computed on
the 200 optimal solutions obtained with the different control strategies. The best results are
shown in bold. Our methodology outperforms the others providing the highest task success
rate, the highest mean information, the smallest mean estimation error along x and y, and the
mean computational time. However, our approach also needs more time to find safe solutions,
implying a high mean task execution time.

The task is illustrated in Figure 14 and involves following the reference trajectory,
depicted in light green, from the starting point to the endpoint while avoiding the three
black obstacle. The robot’s initial configuration, q,, is aligned with the starting point of the
reference trajectory. The task is performed under the assumption of a failure risk r = 5%

For the evaluation, we have compared the estimation performances of the EKF (used an
observer) in terms of the average minimum amount of information, i.e., A;,(P), collected
along the trajectory, and the mean estimation errors, mean task execution time, mean
computational time, and task success rate (the task is considered failed if at least one of
the safety constraint is violated).

Table 8 shows that our methodology outperforms the other approaches, providing the
highest task success rate, the highest mean information, the smallest mean estimation
errors along x and y, and mean computational time. The MPC without active sensing
without/with CBF presents the smallest task success rate. This approach only considers the
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robot’s and landmarks’ sizes but not the robot state estimation uncertainty. In other words
during the planning, the estimation uncertainty about the robot state is not considered
leading to trajectories that could be safe for the estimated state but not for the real one. A
slight improvement is obtained through the MPC with active sensing without CBE The
inequality constraints do not always find safe trajectories, while CBFs improve the feasibility
of the problem. This is proved by the task success rate, greater for the approaches with
CBFs. Finally, with our Information-aware CBE the highest task success rate is obtained
which is equal to 100%. However, finding safe solutions requires time, and hence with
our approach, the task is accomplished with the highest mean task execution time. This
aspect can be mitigated, for example, by increasing the risk r (which is 5% here) or by
introducing a slack variable in the CBF constraint.

4.3 Integration with the navigation stack

To encompass the concept of risk at the motion planning level, we integrate the described
risk maps with the local planner (the MPC (model predictive control) developed in T6.1).
The risk maps are embedded as soft constraints within the MPC formulation, with their
weights adjusted according to the potential severity of the associated risk factors. Figure 15
and Figure 16 show the robot moving during integration tests at KI.Fabrik in Munich. The
robot moves taking into account human 3D poses, activities, trajectory prediction and risk
maps.

Figure 15: Rviz visualization and onboard camera image, while the robot moves in the KI.Fabrik
in Munich. The risk map is centered on the robot and includes detected objects, and static
known risky areas (near the retractable belt stanchions).
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Figure 16: Focus on human skeletons detection and the constraints (blue and red markers)
derived from the risk maps.

Integration of the other components described in this deliverable is still ongoing. When
the robot has to perform a long navigation task across multiple corridors the route planner
will give as output the next routes intersection point to be reached by the global planner.
We are integrating the active sensing module in the navigation framework as a constraint
for the MPC similarly to as done for the risk maps.

5 On the evaluation of collision probability along a path

The evaluation of collision probability (CP) is a critical component of risk assessment in
robotics, particularly for applications involving autonomous systems operating in dynamic
and uncertain environments. Grid-based methods, which discretize the naturally con-
tinuous environment, have previously been proposed for CP estimation during motion.
However, these methods face a fundamental limitation - as the grid cells approach in-
finitesimal size to better approximate the continuous space, the CP estimation invariably
approaches 1, rendering the approach ineffective. While Monte Carlo (MC) simulations
offer an alternative with high accuracy, their computational demands make them unsuit-
able for real-time applications, and their inherent discontinuities present challenges for
smooth optimization.

In this section, we explain the research work that we carried out to propose a method
that combines computational efficiency with accuracy, addressing the continuous nature
of robot trajectories and environmental uncertainties. For a detailed derivation of the
mathematical formulation, proofs, and extensive experimental validation, the reader is
referred to the complete work in [18].

We propose a novel metric, termed Risk Density, to address the limitations of existing
methods for evaluating CP along a continuous path. The method assumes a robot that
navigates along a continuous trajectory modeled as a parametric path. The position
of the robot and obstacles are both modeled as Gaussian distributions, accounting for
uncertainties in localization and obstacle positioning. Given these assumptions, the goal is
to estimate the probability of collision along the entire trajectory.

The work provides a framework to examine how different assumptions about the
interdependence of collision events lead to valid CP approximations. Risk Density serves
as a theoretical bridge between two of these assumptions: by computing the sensitivity
of CP to the size of the combined robot-obstacles object, the same quantity is obtained
starting from either assumptions. This quantity in turn is used to effectively approximate
CP and risk variations without the need for excessive sampling or discretization.

Mathematically, the risk density is a functional, expressed as a unidimensional line
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integral of the probability density function of the combined robot-obstacle object over the
trajectory. Given a trajectory y4(s), a Gaussian pdf A" representing uncertainty, and its
associated covariance %, the Risk Density is:

1
d
ra(ra) = zf Hra)0,50) |74 ds. (36)
0
The associated CP approximation then is simply
P,(C,r) ~r4(yq)r, r radius of combined object. 37

This formulation avoids the need for parameter tuning and offers a computationally
efficient approximation of the CB making it suitable for real-time applications.

The proposed method has been validated through extensive numerical simulations
and benchmark comparisons against traditional approaches:

* Monte Carlo Simulations: The Risk Density approximation closely matches MC
results with significantly reduced computation time while also maintaining differen-
tiability.

* Grid-Based Approaches: Unlike grid-based methods, the proposed approach avoids
issues arising from discretization, providing consistent results without requiring
tuning of grid resolution.

» Stagewise Approximations: The method outperforms estimations based on Boole’s
Lemma, often used in chance-constrained optimization, which tends to overestimate
collision probabilities due to double counting of events.

The experiments demonstrate that the proposed method effectively balances accuracy
and computational efficiency across different trajectories and levels of uncertainty. More-
over, its formulation makes it particularly suitable for trajectory optimization tasks where
probabilistic constraints must be enforced and multiple obstacles are present.

6 Conclusions and ongoing work

In this task, we have explored several strategies to incorporate risk reasoning and uncer-
tainty awareness throughout all levels of the motion planning pipeline. In particular, we
developed:

* A risk-aware route decision maker that effectively includes possible future observa-
tions in the model to minimize a risk factor concerning human encounters.

* Heterogenous risk maps to evaluate risk factors locally.
* An active sensing layer to reduce uncertainty when needed.
* A novel method to evaluate the probability of collision along a continuous path.

While some components have already been integrated into the DARKO navigation
framework, the integration of the remaining strategies is an ongoing effort and part of our
future work.
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